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Abstract. Survival rates of juvenile reptiles are critical population parameters but are
difficult to obtain through mark–recapture programs because these small, secretive animals
are rarely caught. This scarcity has encouraged speculation that survival rates of juveniles are
very low, and we test this prediction by estimating juvenile survival rates indirectly. A simple
mathematical model calculates the annual juvenile survival rate needed to maintain a stable
population size, using published data on adult survival rates, reproductive output, and ages at
maturity in 109 reptile populations encompassing 57 species. Counter to prediction, estimated
juvenile survival rates were relatively high (on average, only about 13% less than those of
conspecific adults) and highly correlated with adult survival rates. Overall, survival rates
during both juvenile and adult life were higher in turtles than in snakes, and higher in snakes
than in lizards. As predicted from life history theory, rates of juvenile survival were higher in
species that produce large offspring, and higher in viviparous squamates than in oviparous
species. Our analyses challenge the widely held belief that juvenile reptiles have low rates of
annual survival and suggest instead that sampling problems and the elusive biology of juvenile
reptiles have misled researchers in this respect.
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INTRODUCTION

Rates of survival of free-living animals are critical

determinants of population viability, and hence the

measurement of such rates has been a central focus of

ecological research (Reed et al. 2003, Frederiksen et al.

2004). A wide variety of methods have been developed

to estimate the probability that an individual will survive

from one year to the next, including sophisticated

statistical modeling (e.g., White and Burnham 1999,

Schmidt et al. 2002, Frederiksen et al. 2004). Most of

these methods are based on mark–recapture data, and

hence rely on the investigator’s ability to capture, mark,

and most importantly, recapture free-living animals.

This requirement creates immense logistical difficulties if

some components of the population are difficult to

capture, a situation that occurs frequently with the

earliest life history stages (Frederiksen et al. 2004). Thus,

for example, most mark–recapture studies on reptiles

provide little information on the early phases of the life

history. This situation reflects the secretive nature of

juveniles in many reptile species (Morafka 1994, Pike

and Grosse 2006), and due to their small size, our

inability to capture them using methods effective for

conspecific adults (Ream and Ream 1966, Congdon et

al. 1993). Ontogenetic shifts in habitat use (Congdon et

al. 1992, Shine and Madsen 1997, Prior et al. 2001)

further exacerbate the problem. To illustrate this

phenomenon, Carr (1952, 1967) famously referred to

the juvenile phase of sea turtle life as ‘‘the missing years’’

because the whereabouts of this life stage, and thus their

ecology, is largely unknown. More than five decades

later this statement still summarizes the state of our

knowledge of most juvenile reptiles in the wild.

The difficulty of finding juvenile reptiles in the field,

even in areas where adults can be found quite easily

(e.g., Carr 1952, Pike et al. 2005), has suggested to many

researchers that these stages are ‘‘missing’’ from the

population and hence that juveniles have much lower

rates of survival than do conspecific adults (e.g.,

Morafka 1994, Heppell et al. 1996, Bodie and Semlitsch

2000, Morafka et al. 2000; but see Gibbons 1968). To

our knowledge, this speculation has not been tested

empirically over a wide range of reptile taxa, for the

simple reason that data on juvenile survival are so

difficult to obtain.

We suggest a different approach that is independent

of our ability to capture juveniles. Instead, we can

estimate the probability of an individual’s survival

through juvenile life from more easily quantified

parameters (age at maturation, rates of annual adult

survival, and reproductive output) under the simplifying

assumption that overall population sizes remain stable

through time. That is, if we know the probable duration

of a female’s reproductive life after she matures, and

how many offspring she is likely to produce per annum

over that period, we can easily calculate her likely
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lifetime reproductive output (Brommer et al. 2003). If

we also know the age at which sexual maturation occurs

(i.e., the duration of juvenile life), we can calculate the

juvenile survival rate necessary to maintain the popula-

tion in a stable numerical equilibrium (i.e., where the

number of offspring produced, multiplied by their

probable survival rate until maturation, is just high

enough to balance the rate of adult mortality; Gaillard

et al. 1989, Caswell 2001; see also Appendix A). We use

these calculated survival rates of juveniles to explore the

relationships among basic life history characteristics

within the major reptile lineages.

METHODS

We used published reviews plus primary data where

necessary (to fill in gaps in the reviews; see Appendix B)

to assemble data on the following life history traits for

lizards, snakes, and turtles: mean annual survival

probability of adult females, mean age at female

maturation, mean number of clutches per adult female

per year, and mean clutch size. From these data we

estimated the mean probability of survival from egg

laying (or birth, in viviparous species) to sexual

maturation that is needed to achieve a stable population

size; and then calculated annual juvenile survival based

on that value and the age at maturation (see Appendix A

for derivation of our model and Appendix B for our

data set). Thus, assuming an equal sex ratio and a stable

population we have

2 ¼ Sa
J

X‘

x¼1

nce�Mx ð1Þ

where SJ is the annual juvenile survival rate, a is the age

at first reproduction, x is age, n is the number of clutches

per year, c is the number in a clutch, and M is the

instantaneous adult survival rate. Depending on how

one censuses the population we could also have

2 ¼ Sa
J

X‘

x¼1

nce�Mðx�1Þ: ð2Þ

This is the formula we use in this paper. The above is a

geometric series, which can be readily solved:

2 ¼ Sa
J nc
X‘

x¼1

e�Mðx�1Þ ¼ Sa
J nc

1� SA

ð3Þ

where SA is the annual adult survival rate. Rearranging

gives

SJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� SAÞ

nc

a

r
: ð4Þ

In cases where data for more than one population of an

individual species were available, we used each popula-

tion as a separate replicate in our analysis (see Harvey

and Pagel [1991] for discussion of this approach).

We conducted two types of statistical analyses on our

data set: one on raw data, and one that incorporated

information on phylogenetic affinities among species.

Presumably, survival rates are not genetically coded per

se, but factors that plausibly influence survival rates

(such as size at hatching) have a strong genetic basis.

Thus, phylogenetic conservatism may influence inter-

specific patterns in juvenile survival rates (Harvey and

Pagel 1991). To overcome this problem, we conducted

comparative analyses to account for possible phyloge-

netic constraints (Felsenstein 1985). We investigated the

relationships between annual juvenile survivorship and

(1) annual adult survivorship, (2) female age at maturity,

(3) number of clutches per year, (4) mean clutch size, (5)

number of eggs per year, (6) offspring size, (7) female

size at maturity, and (8) mode of reproduction

(oviparous or viviparous).

For phylogenetic analyses we used independent

contrasts with all branch lengths set to one. Relation-

ships among variables were analyzed by linear regres-

sions forced through the origin (i.e., intercepts adjusted

to zero; Garland et al. 1992). All contrasts were

performed using the PDAP software package (Midford

et al. 2005) in Mesquite 1.12 (Maddison and Maddison

2006). Phylogenetic relationships among taxa were

obtained from published literature (see Appendix C).

In some cases we had to assume that taxonomy was

equivalent to phylogeny. Different populations of the

same species were considered sister clades (or sometimes

polytomies), and we used the supertree technique to

solve incongruences among these hypotheses (Bininda-

Emonds 2004). All tests were run using two phylogenetic

hypotheses for the squamates (see Appendix C for

phylogenies), one based mainly on molecular characters

(Townsend et al. 2004, Vidal and Hedges 2005) and the

other on morphology (Lee 2005).

RESULTS

We collated life history data on 20 species of lizards

(46 populations), 20 species of snakes (40 populations),

and 17 species of turtles (23 populations; see data set in

Appendix B).

Analyses of raw data

Differences among taxonomic groups were apparent

in both life stages; lizards had the lowest mean annual

survival rates, followed by snakes, with turtles having

the highest values ( juveniles, F2, 106¼ 27.96, P , 0.0001;

adults, F2, 106 ¼ 91.23, P , 0.0001; all Fisher’s PLSD

(protected least significant difference) post hoc compar-

isons have P , 0.001; Fig. 1). Hence, mean annual

survival rates differ among lizards, snakes, and turtles in

juvenile as well as adult life history stages.

Overall, estimated rates of annual survival were lower

for juveniles than for conspecific adults (paired t¼ 7.39,

df ¼ 108, P , 0.0001), but were not as low as often

speculated. Estimated rates of annual survival for

juveniles averaged 0.32 for lizards, 0.46 for snakes, and

0.65 for turtles, only 13% lower (on average) than the

measured rates for conspecific adults (Fig. 1). Indeed,
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estimated survival rates were actually higher for

juveniles than for conspecific adults in 15 lizard species

and two turtle species. Strikingly, estimated survival

rates were highly correlated across life stages (R2¼ 0.39,

N¼ 109, P , 0.0001; Fig. 2). That is, species with high

rates of annual survival during adult life also have high

rates of annual survival during juvenile life (Fig. 2). In

addition, juvenile survival rates are strongly related to

adult reproductive output (R2 ¼ 0.16, N ¼ 109, P ,

0.0001); higher juvenile survival occurs in species with

lower reproductive output. Unsurprisingly, given our

methods of calculation, multiple regression suggested

that the estimated rate of annual survival of juveniles

was related to age at maturation (t¼ 12.64, P , 0.0001),

number of clutches produced per adult female per year (t

¼ 5.46, P , 0.0001), and mean clutch size (t¼ 5.72, P ,

0.001).

More interestingly, juvenile survival rates were

significantly correlated with variables independent of

those used in our model to estimate those rates. For

example, a priori we might predict that the two factors

likely to enhance rates of juvenile survival are offspring

size (bigger offspring should be more likely to survive)

and reproductive mode (viviparity should reduce rates

of embryo mortality because it removes the vulnerable

egg stage). Our data support both predictions. First,

larger offspring had higher survival rates: looking only

within squamates (because measures of carapace length

in turtles are not equivalent to measures of body length

in squamates), species with larger offspring had higher

juvenile survival rates (N ¼ 86, r ¼ 0.34, P , 0.001).

Body size at hatching or birth was closely tied to body

size at maturation for females in our data set (N¼86, r¼
0.97, P , 0.0001), so annual juvenile survival was also

significantly linked to mean female size at maturation (N

¼ 86, r ¼ 0.27, P , 0.02).

Second, comparisons between oviparous and vivipa-

rous species (within squamates only, because all turtles

are oviparous) also showed the expected patterns.

Overall, mean annual survival rates of juveniles were

higher for viviparous than for oviparous species (means

of 0.48 vs. 0.34; ANOVA with reproductive mode as the

factor, F1,84¼ 10.72, P , 0.002; Fig. 3). Also, we might

expect adult survival rates to play a role in this

comparison, because the degree to which viviparity

enhances juvenile survival depends upon the pregnant

female’s probability of surviving long enough to

produce a litter. We thus predict that the advantage of

viviparity for juvenile survival will be greatest for species

with high adult survival rates. To test this prediction, we

used analysis of covariance (ANCOVA) with reproduc-

tive mode as the factor, adult survival rate as the

covariate, and juvenile survival rate as the dependent

variable. As predicted, the interaction term was signif-

icant (reproductive mode 3 adult survival rate, F1,82 ¼
8.75, P , 0.004); viviparity thus provides less benefit to

juvenile survival in taxa with lower rates of adult

survival.

Phylogenetically based analysis

Our comparative analyses revealed many of the same

patterns as documented above for analyses based on raw

FIG. 1. Annual survival rates (meanþ SE) for juvenile and
adult lizards, snakes, and turtles. Mean values for adults were
taken from the literature, and estimates for juveniles were
calculated from our model. See Methods for data sources, and
the entire Results section for statistical results.

FIG. 2. Relationship between annual juvenile survival rates
(calculated from our model) and annual adult survival rates
(taken from the literature) for 57 species of lizards, snakes, and
turtles (109 populations). Higher annual adult survival rates
were correlated with higher annual juvenile survival rates.

FIG. 3. Annual juvenile survival rates (mean þ SE) for
oviparous and viviparous squamate reptiles. Oviparous species
have lower survival rates than viviparous species.
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data. Thus, evolutionary changes in adult survival rates

were consistently accompanied by similar changes in

juvenile survival rates (considering both phylogenetic

hypotheses, based on Vidal and Hedges (2005), R2 ¼
0.08, P ¼ 0.002; and Lee (2005), R2 ¼ 0.09, P ¼ 0.002).

Annual juvenile survivorship was also correlated with

female age at maturity (R2 ¼ 0.16, P , 0.0001 vs. R2 ¼
0.17, P , 0.0001), number of clutches produced per

adult female per year (R2¼ 0.05, P¼ 0.01 vs. R2¼ 0.05,

P¼ 0.02), but not to clutch size (R2 , 0.01, P¼ 0.67 vs.

R2 , 0.01, P ¼ 0.65). Although offspring size was

positively correlated with female body size at maturity in

phylogenetic comparisons (R2¼ 0.51, P , 0.0001 vs. R2

¼ 0.23, P , 0.0001), annual juvenile survivorship was

not related to offspring size (R2¼0.02, P¼0.23 vs. R2 ,

0.01, P¼ 0.39) or body size at maturity (R2 , 0.01, P¼
0.94 vs. R2 , 0.01, P ¼ 0.95).

Our independent contrast analysis did not reveal any

relationships between mode of reproduction and annual

adult survivorship (R2 , 0.01, P¼0.82 vs. R2¼0.02, P¼
0.42), or between mode of reproduction and annual

juvenile survivorship (excluding turtles, R2 ¼ 0.01, P ¼
0.53 vs. R2 ¼ 0.03, P ¼ 0.11, respectively).

DISCUSSION

We acknowledge that our analysis is simplistic and

imprecise. However, most of the resulting errors (e.g.,

some populations increasing or decreasing in size rather

than being stable through time) should represent

random noise, and thus not greatly affect the mean of

our estimated rates. Hence, such errors cannot explain

the surprisingly high mean survival estimates for juvenile

reptiles (Figs. 1, 2). Similarly, random noise should

obscure any patterns rather than generate correlations,

such as the one we found between the survival rates of

adult vs. conspecific juveniles, or between juvenile

survival rates and other variables such as offspring size

and reproductive mode. Also, the overall positive

correlation between survival rates in the two phases of

the life history (juvenile vs. adult; Fig. 3) runs directly

opposite to the pattern expected as a mathematical

artifact: all else being equal, an increase in adult survival

should lead the model to calculate a lower juvenile

survival rate to maintain stable population numbers.

Instead, the positive correlation between survival rates

in these two life history phases makes sense in terms of

the broad similarity of conspecific juvenile and adult

animals, which presumably face similar risks of mortal-

ity from predators, diseases, resource fluctuations, and

the like (Gibbons 1968, Wilbur 1975, Parker and Brown

1980).

Perhaps our most surprising result is that annual

survival rates of juvenile reptiles are relatively high, and

similar to those of adult conspecifics (Figs. 1, 2). This

conclusion is particularly nonintuitive because our

methods of calculation include the egg stage within the

juvenile phase, and thus the enormously high rates of

egg mortality in many systems (e.g., Burger 1977, Tinkle

et al. 1981, Congdon and Gibbons 1990, Burke et al.

1998), which would lead us to expect very low overall

survival through to adulthood. The lack of such a

pattern, despite high egg mortality in many species,

suggests that our calculated rates of juvenile survival are

likely underestimates; and hence, that juvenile reptiles

may often have survival rates similar to those of

conspecific adults.

If survival rates of juvenile reptiles are indeed

relatively high, other factors must drive our inability

to detect juvenile animals. The primary reason for this

may be small body size; smaller animals are harder to

see and may be missed in field surveys (Wilbur 1975,

Blomberg and Shine 2004). Additionally, juveniles may

be sedentary (Sexton 1959, Taylor 1986, Pike and

Grosse 2006) or use habitats where they are relatively

invulnerable to predators (including humans). Another

confounding factor is that juveniles often disperse to

new areas; if this is the case then mark–recapture data

will tend to underestimate juvenile survival because

many surviving offspring move so far from the study

area that they are never recaptured, giving the false

impression of low survival. In sum, many factors other

than low survival may explain low capture rates of

juvenile reptiles. We know remarkably little about this

critical life stage, and more detailed data are urgently

needed.
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APPENDIX A

Details of the model used to estimate annual rates of juvenile survival in lizards, snakes, and turtles (Ecological Archives E089-
034-A1).

APPENDIX B

A list of species with associated demographic data used in analysis of juvenile survival rates of lizards, snakes, and turtles
(Ecological Archives E089-034-A2).

APPENDIX C

Phylogenetic hypotheses based on the literature for relationships among the reptile taxa studied (Ecological Archives E089-034-
A3).
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