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Abstract
Background: The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys
subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered
species. In addition to being threatened, it is poorly known, and even its taxonomic status at the
family level has long been controversial. The genus Chaetomys was originally regarded as a
porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family
Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further
discussion of its affinities should be based on a phylogenetic framework. In the present study, we
used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and
karyotypic information to address this issue. Our molecular analyses included one individual of
Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths.

Results: All topologies recovered in our molecular phylogenetic analyses strongly supported
Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus
showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that
the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and
submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs.
The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding
to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42
and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial.

Conclusion: Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is
closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position
relative to the rest of the Erethizontidae. The high levels of molecular and morphological
divergence suggest that Chaetomys belongs to an early radiation of the Erethizontidae that may have
occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.
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Background
The family Erethizontidae, the New World porcupines, is
widely considered a primitive clade among caviomorph
rodents, and probably diverged early in the evolutionary
history of the New World hystricognaths (e.g. [1-3]).
Some authors have suggested that the family may repre-
sent an independent early invasion of hystricognath
rodents in South America (e.g. [1]), as the family Hystrici-
dae may represent a separate colonization of hystricog-
naths in Africa [4]. The Erethizontidae is restricted to the
New World and comprises about 15 extant species [5].

In a study on Neotropical porcupines, Voss and Anger-
mann [6] clarified the taxonomy of some erethizontids.
However, Bonvicino et al. [7] noted that the status of sev-
eral taxa in this family and their phylogenetic relation-
ships are still poorly understood. Erethizon and
Echinoprocta are recognized as monotypic genera, whereas
other species of erethizontids are allocated either to the
genera Coendou and Sphiggurus (e.g [8,9]) or solely to the
genus Coendou (e.g. [6,10]). Bonvicino et al. [7] used the
mitochondrial cytochrome b gene and karyologic data to
clarify the taxonomic status of Coendou and Sphiggurus.
Both kinds of data demonstrated that Coendou and Sphig-
gurus represent two evolutionary lineages. Their compara-
tive analyses of the karyotypes showed that species of
Coendou are karyologically conservative, sharing the same
diploid and fundamental numbers. Species of Sphiggurus,
on the other hand, diverge in diploid number although
they share the same fundamental number.

There are countless taxonomic issues involving the Ereth-
izontidae, but perhaps no taxon has aroused more contro-
versy than the genus Chaetomys, which contains a single
species, the thin-spined porcupine Chaetomys subspinosus.
This species is endemic to the Atlantic Rainforest in east-
ern Brazil and, according to Woods and Kilpatrick [9], it is
found from the southern part of the state of Sergipe to the
northern part of the state of Rio de Janeiro, including east-
ernmost Minas Gerais. Chaetomys subspinosus is considered
an endangered species by the U.S. Endangered Species Act,
U.S. ESA; a vulnerable species by the International Union
for the Conservation of Nature and Natural Resources,
IUCN; and a threatened species by the Instituto Brasileiro
do Meio Ambiente e dos Recursos Naturais Renováveis,
IBAMA.

In this species, the structure of the feet, nose, and tail
resembles that of the erethizontids, although there is no
consensus as to whether the tail is prehensile [5,11] or not
[8]. The structure of the cheek teeth, nevertheless, differs
from that of the erethizontids. Based on tooth structure,
Stehlin and Schaub [12] included Chaetomys in the family
Echimyidae. Again emphasizing the molar tooth struc-
ture, Schaub [13] later assigned Chaetomys to the echimyid

subfamily Echimyinae. Patterson and Wood [4] reasoned
that two characters are fundamental to the familial assign-
ment of Chaetomys. Both of these characters are strongly
negative as regards erethizontid affinities, and one is
strongly positive as regards echimyid affinities: (1) in con-
trast to the known erethizontids and in agreement with all
other living caviomorphs, Chaetomys lacks a posterior
carotid foramen; (2) in agreement with all echimyids and
in contrast to all other caviomorphs, the deciduous
premolars (dP4) are retained throughout life in Chaeto-
mys. Patterson and Wood [4] suggested classifying Chaeto-
mys in a subfamily of the Echimyidae, the Chaetomyinae,
and were followed by others (e.g. [8,14]). Woods [14], for
instance, divided the family Echimyidae into five sub-
families: Chaetomyinae, Dactylomyinae, Echimyinae,
Eumysopinae, and the extinct Heteropsomyinae.

The placement of Chaetomys within the echimyids was
questioned by Martin [15] who argued that Chaetomys
lacks a derived incisor enamel microstructure, characteris-
tic of the superfamily Octodontoidea, which includes the
Echimyidae. Martin [15] also found that the posterior
carotid foramen is actually present in Chaetomys, refuting
claims by Patterson and Wood [4]. Martin [15] noted,
however, that the presence of a posterior carotid foramen
and the primitive incisor enamel microstructure should
be regarded as plesiomorphic traits for the Hystricognathi.

Although Martin [15] found no evidence against the
retention of the dP4 in Chaetomys, such evidence was later
found [16]. Nevertheless, the substitution of the dP4 is
considered a plesiomorphic trait for the Hystricognathi
and again supports the exclusion of Chaetomys from the
family Echimyidae, but does not add information on fur-
ther taxonomic affinities. Carvalho [16] noted, however,
that according to Bryant and McKenna [2], the presence of
an internal carotid artery, although a primitive character
for the Rodentia, emerges as derived character for the Ere-
thizontidae within the hystricognaths. Carvalho [16]
therefore reinterpreted the presence of the posterior
carotid foramen as evidence for the association of Chaeto-
mys with the erethizontids.

While the familial classification of Chaetomys seems to be
resolved, its association with the other erethizontids is
still unclear. Some authors consider its unique morphol-
ogy as evidence of its distance from the rest of the Ereth-
izontidae and classify Chaetomys in a separate subfamily
(e.g. [9,17]). Nevertheless, Chaetomys and the other South
American porcupines share a highly derived morphology
of the hind foot that is not seen in the North American
form.

In the present study, we reconstructed phylogenies based
on the mitochondrial cytochrome b gene sequences from
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a single specimen of Chaetomys subspinosus collected in
Salvador, state of Bahia, Brazil, and from representatives
of seven hystricognath families: the caviomorphs Ereth-
izontidae, Echimyidae, Ctenomyidae, Caviidae, and
Octodontidae; and the phiomorphs Hystricidae and Bath-
yergidae. We also compared the karyotype of this speci-
men with those of other hystricomorphs. Our main goal
was to discuss the taxonomic affinities of C. subspinosus on
the grounds of a phylogenetic analysis.

Results
Karyotype
The conventionally stained karyotype of one female of
Chaetomys subspinosus had 2n = 52 (Figure 1). The karyo-
type included 13 large to medium pairs of metacentric
and submetacentric chromosomes, gradually decreasing
in size (pairs 1 to 13); one small pair of subtelocentric
chromosomes (pair 14); and 12 small pairs of acrocentric
chromosomes (pairs 15 to 26). Although the sexual pair
could not be identified, we assumed that the X chromo-
some is biarmed, considering that: (1) the X chromosome
of most placental mammals comprises about five percent
of the genome; (2) the X chromosome in hystricognaths
is rarely small and often biarmed; (3) all the acrocentric

chromosomes of Chaetomys subspinosus are small. We
therefore calculated the fundamental number, i.e. the
number of autosome arms, as FN = 76. There was a sec-
ondary constriction, terminal to the short arm of the sub-
telocentric pair 14 (Figure 2c), corresponding to the
nucleolar organizer region, Ag-NOR (Figures 2a and 2b).
The G-banding pattern allowed us to pair homologues
(Figure 3).

Base composition and sequence variation
Polymerase chain reaction amplifications yielded, with
one exception (see Methods), single products of the
expected sizes. Alignment of the cytochrome b gene
sequences of 27 taxa resulted in 1,140 base pairs, corre-
sponding to 379 amino acids and a stop codon. Transla-
tion of the nucleotide sequences found no unexpected
intermediate stop codon. The dataset contained 526 con-
stant sites, and 89 variable characters were parsimony-
uninformative. The possibility for evolution at the nucle-
otide level varied among codon positions. Of 525 parsi-
mony-informative sites, 135 were at first positions, 46 at
second positions, and 344 at third positions. The empiri-
cally observed ratio of rate of change among codon posi-
tions was 3:1:9.

Conventionally stained karyotype of a female of Chaetomys subspinosusFigure 1
Conventionally stained karyotype of a female of Chaetomys subspinosus. 2n = 52 and FN = 76; assuming that the X 
chromosome is biarmed; the sexual pair could not be identified.
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The mean base compositions across all taxa were T =
29.9%, C = 26.9%, A = 30.9%, and G = 12.4%. Although
there was a deficit of guanine, its frequency differed dras-
tically among the three codon positions, representing
3.2% of the third positions, 13.6% of the second posi-
tions, and 20.5% of the first positions. The first and third
positions were richer in adenine (30.1% and 41.8%,
respectively), and the second positions had more thymine
(41.1%). These frequencies reflected the strongly biased
base composition and codon usage found in cytochrome
b, and agreed with previous findings [18-20].

The g1 statistic, used to examine 1,000,000 randomly gen-
erated topologies (mean length = 4,170 steps, SD = 76.09,
and g1 = -0.71), indicated the strong phylogenetic signal
conveyed by this data set. In Xia's test for substitutions sat-
uration [21] the critical index of substitution saturation

depends on the topology. We found little saturation for
any topology in the second positions; whereas we found
little saturation for symmetrical trees and substantial sat-
uration for asymmetrical trees in the first and third posi-
tions. The plot of transition and transversion rates at each
codon position against the Kimura's 2-parameter dis-
tances for pairwise comparisons of cytochrome b gene
sequences of our sample showed evidence for substantial
saturation only at third-position transitions, and evidence
for moderate saturation at third-position transversions
and first-position transitions. In a previous study involv-
ing cytochrome b gene analysis of representatives of 11
sciurognath and 3 hystricognath families, Montgelard et
al. [22] observed that homoplastic saturation events occur
in some transversions along with transitions. More sur-
prisingly, they observed that A-G transitions at third posi-
tions are less affected by saturation, showing that

Silver-nitrate stained NOR (Ag-NOR) metaphases of Chaetomys subspinosusFigure 2
Silver-nitrate stained NOR (Ag-NOR) metaphases of Chaetomys subspinosus. Complete (a) and partial (b) Ag-NOR 
metaphases of Chaetomys subspinosus showing signals on the short arm of pair 14 (arrows). (c) Conventionally stained pair 14 
showing terminal secondary constriction on the short arm (arrows).
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transitions in third positions may carry phylogenetic
information.

Phylogenetic analyses
All topologies recovered in our analyses strongly sup-
ported Chaetomys subspinosus as a sister clade to the ereth-
izontids. In Table 1 we summarize the optimal branch
lengths and support values for the principal nodes in our
phylogenies. Maximum parsimony (MP) heuristic search
produced 182,821,196 rearrangements, and resulted in
one most-parsimonious tree (3,144 steps, CI = 0.33, RI =
0.44). Hierarchical likelihood ratio tests (hLRTs) as well
as the Akaike information criterion (AIC) selected as the
best-fit model for our dataset the general-time reversible
model with a proportion of invariable sites and a discrete
gamma distribution for the variable sites (GTR+I+Γ) (lnL
= -13,066.6846). The estimated gamma shape parameter
(α) was 0.5884 and the proportion of invariable sites was
0.3962. Maximum likelihood (ML) heuristic search pro-
duced 191,071 rearrangements, and resulted in one best
tree (-lnL 13,055.69138). The majority-rule consensus of
59,900 sampled trees reconstructed from two runs of
Bayesian analysis (BA) generated a topology similar to the
ML best tree. For the estimated marginal likelihoods in

BA, the arithmetic mean was -13,080.24, and the har-
monic mean was -13,113.13.

The permutation tail probability (T-PTP) test [23] sup-
ported the inclusion of Chaetomys within the family Ereth-
izontidae (P = 0.000270) against its inclusion within the
family Echimyidae (P = 0.875800). The Templeton [24]
test found no difference between the best unconstrained
tree and the best constrained tree to include Chaetomys
within the Erethizontidae, whereas it found a significant
difference (p < 0.001) between the best unconstrained
tree and the best tree constrained to include Chaetomys
within the Echimyidae. The Kishino-Hasegawa (KH) [25]
and Shimodaira-Hasegawa (SH) [26] tests gave similar
results.

Molecular evolutionary rates and molecular dating
The likelihood ratio test (LRT), comparing likelihood
scores of unconstrained and clock-constrained best trees,
was not significant at the alpha level of 0.0100 (lnL = -
13,076.26581 under global clock constraint versus lnL = -
13055.69138 without clock constraint; LRT statistics =
41.148438, df = 25, P = 0.022146), suggesting clock-like
behavior. The estimates of divergence times calculated

G-banded karyotype of Chaetomys subspinosusFigure 3
G-banded karyotype of Chaetomys subspinosus.
Page 5 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:29 http://www.biomedcentral.com/1471-2148/9/29
using Bayesian analyses are shown in Table 2, and the
chronogram constructed using Bayesian analysis assum-
ing rates conformed to a molecular clock is shown in Fig-
ure 4. The estimates of divergence times calculated using
non-Bayesian methods are shown in Table 3. The results
from Bayesian and non-Bayesian methods were slightly
different; the greatest discrepancy was found in the deeper
nodes, namely the Hystricomorpha and the Ctenodactyl-
idae. The NPRS-LOG method yielded the most divergent
ages, and the GRMD yielded intermediate ages. As
expected, the methods assuming relaxed rates (UCLN and
NPRS-LOG) had greater variance of ages than the meth-
ods assuming clock-like rates (CLOC and GRMD). For
most nodes, nevertheless, the estimates of divergence
times using different methods were similar, within the
same or nearly the same geological epochs.

Discussion
A species-specific karyotype
The karyotype observed in Chaetomys subspinosus differs in
diploid (2n = 52) and fundamental (FN = 76) numbers
from all echimyid or erethizontid karyotypes investigated
so far, suggesting that this karyotype is species-specific for
Chaetomys subspinosus.

Echimyids have diploid numbers ranging from 2n = 14–
16 in Proechimys gr. goeldii [27] to 2n = 118 in Dactylomys
boliviensis [28], the latter being the largest diploid number
described for a mammal. The Echimyidae is therefore the
family with the widest diversity in diploid numbers found
in mammals. Of all the echimyid species studied to date,
only two have 2n = 52: Proechimys guairae, with FN = 72–
74 [29]; and Phyllomys nigrispinus, with FN = 94 [30]. Both
karyotypes differ in chromosome morphology from that
of Chaetomys subspinosus. Erethizontids have diploid num-
bers ranging from 2n = 42 in Erethizon dorsatum [31],
Sphiggurus pruinosus [32], and S. villosus [33] to 2n = 74 in
all species of Coendou studied so far [34,35], and none of
them has 2n = 52.

Karyotypes with fundamental numbers of 76 are found in
only two echimyid species: Proechimys urichi, with 2n = 62
[36]; and Proechimys poliopus, with 2n = 42 [36]. Chromo-
some morphology in both species differs from that in
Chaetomys subspinosus. The fundamental numbers in ereth-
izontids are FN = 76 in Erethizon dorsatum [31] and all spe-
cies of Sphiggurus studied so far [7,32,33,35], and FN = 82
in all species of Coendou studied so far [34,35].

Although different, the diploid number of Chaetomys sub-
spinosus is intermediate relative to the erethizontids, and

Table 1: Lengths of optimal branches and robustness estimators for representative nodes of the Hystricognathi cytochrome b trees.

Nodes Inference methods

MP ML BA

steps BP steps DI steps BP steps BP

Hystricognathi 86 100 83 33 85 100 87 100
Bathyergidae 60 100 60 20 58 100 58 100

Hystricidae + Caviomorpha 46 72 42 5 48 82 45 98
Caviomorpha 58 50 * * 55 67 55 100

Hystricidae + Erethizontidae * 38* 52 3 * * * *
Erethizontidae 49 97 70 17 54 100 51 100
Erethizontinae 59 100 68 22 58 99 59 100

Coendou + Sphiggurus 43 92 44 7 43 95 43 98
Coendou 52 100 52 36 52 100 52 100

Sphiggurus 60 100 60 43 64 100 60 100
Octodontoidea + Cavioidea 51 59 36 5 52 71 49 100

Octodontoidea 72 96 49 14 56 99 51 100
Echimyidae * 42* 34 5 38 91 37 100

Octodontidae + Ctenomyidae * 41* 40 5 38 79 45 93
Ctenomyidae 115 100 70 37 76 100 77 100
Octodontidae 97 96 49 11 48 100 47 100

Cavioidea 55 66 54 6 49 92 51 100
Caviidae 40 63 39 6 48 75 42 84

Lengths of optimal internal branches are given in number of steps. Bootstrap percentages (BP) were obtained using phylogenetic reconstructions 
under maximum parsimony (MP) and maximum likelihood (ML). Bremer support or decay index (DI) was implemented in MP. Support for the 
Bayesian analysis (BA) was given by Bayesian posterior probabilities (BPP). BP and BPP were estimated under 50% majority-rule consensus. Star (*) 
indicates that the node was not recovered or was not supported in the corresponding analysis. Support values within Zander's [50] 0.95 binomial 
confidence intervals (CI) are highlighted in bold face.
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the fundamental number is the same as that found in Ere-
thizon and Sphiggurus. The FN shared by these genera sug-
gests that their karyotypes can be derived from one
another by Robertsonian rearrangements, and that the
ancestral erethizontid karyotype may have had a funda-
mental number of FN = 76.

The Ag-NOR-bearing pair found in Chaetomys subspinosus
resembles one of two Ag-NOR pairs found in the ereth-
izontid Sphiggurus villosus (Figure 5), and differs from the
Ag-NOR pair found in echimyids. In Chaetomys, as well as
in Sphiggurus, there was a secondary constriction, associ-
ated with the Ag-NOR, terminal to the short arm of a sub-
telomeric pair. There is a secondary constriction

associated with the Ag-NOR, in a single chromosome pair,
in all echimyid species studied so far; however, it is in a
metacentric pair and is interstitially located in the long
arm.

Leal-Mesquita [37] observed that G-banding patterns
flanking the Ag-NORs are rather conservative across differ-
ent echimyid species. Interstitial Ag-NORs, similar to that
found in echimyids, are also found in a few insectivores,
cetartiodactyls, chiropterans, and primates, and fre-
quently among carnivores [38-40]. In this last group, the
pair with interstitial Ag-NORs is referred to as the 'carni-
vore chromosomes'. Among rodents, all ctenodactylids
and most hystricognaths have a single pair of chromo-

Divergence time estimates from the Bayesian analyses (BA), of cytochrome b sequences, of 25 hystricognaths and the outgroupFigure 4
Divergence time estimates from the Bayesian analyses (BA), of cytochrome b sequences, of 25 hystricognaths 
and the outgroup. Molecular time-scale for the Hystricomorpha. The chronogram was obtained using the Maximum Clade 
Credibility Tree (MCC) of phylogenetic reconstructions sampled under Bayesian Markov chain Monte Carlo (MCMC) method, 
with rates conformed to a molecular clock (CLOC). The divergence times correspond to the mean posterior estimate of their 
age in millions of years (Ma). The blue bars represent the 95% HPD interval for the divergence time estimates. The geological 
epochs are reported according to the 1999 Geologic Time Scale of the Geological Society of America (Plei = Pleistocene). ES, 
Espírito Santo; RJ, Rio de Janeiro; SP, São Paulo.
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Table 2: Estimates of mean divergence times, and respective 95% HPD intervals given by Bayesian analyses of cytochrome b 
nucleotide sequences.

Nodes CLOC UCLN Geological epoch

Mean 95% HPD Mean 95% HPD

Hystricomorpha 44.5 39.2–50.1 47.1 39.8–55.3 Middle Eocene
Ctenodactylidae 15.6 12.2–19.3 16.1 10.0–22.2 Middle Miocene
Hystricognathi 41.7 37.4–46.6 43.7 37.9–50.1 Middle Eocene
Bathyergidae 19.3 14.8–24.0 20.1 12.8–27.7 Early Miocene
Caviomorpha 34.8 33.1–36.6 34.8 33.0–36.5 Late Eocene
Erethizontidae 21.2 17.0–25.4 21.0 15.1–27.0 Early Miocene
Erethizontinae 7.4 5.6–9.2 7.7 5.1–10.4 Late Miocene
Coendou + Sphiggurus 4.1 2.9–5.4 4.2 2.5–6.0 Early Pliocene
Coendou 0.1 0.04–0.2 0.1 0.04–0.2 Pleistocene
Sphiggurus 0.3 0.2–0.5 0.3 0.2–0.5 Pleistocene
Octodontoidea 25.8 24.1–27.3 25.8 24.2–27.5 Late Oligocene
Echimyidae 20.0 18.5–21.5 20.0 18.4–21.7 Early Miocene
Ctenomyidae 5.6 4.2–7.2 5.6 3.4–8.1 Late Miocene
Octodontidae 12.3 9.8–14.5 12.5 9.2–16.1 Middle Miocene
Cavioidea 24.1 20.3–27.8 23.1 18.1–28.0 Late Oli.-Early Mio.
Caviidae 19.5 15.5–23.7 19.1 13.6–25.1 Early Miocene

Estimates of divergence times expressed in million years. CLOC: rates conformed to a molecular clock. UCLN: rates uncorrelated, with the rate in 
each branch independently drawn from a lognormal distribution. HPD: highest posterior densities. The geological epochs corresponding to 
divergence times followed the 1999 Geologic Time Scale of the Geological Society of America. Oli.: Oligocene; Mio.: Miocene.

Table 3: Estimates of mean divergence times, and respective 95% CL intervals given by non-Bayesian analyses of cytochrome b 
nucleotide sequences.

Nodes NPRS-LOG GRMD Geological epoch

Mean 95% CL Mean 95% CL

Hystricomorpha 58.6 53.7–76.1 52.2 49.1–63.1 Late Pal.-Early Eoc.
Ctenodactylidae 26.3 22.7–33.4 17.68 14.8–20.5 Late Oli.-Early Mio.
Hystricognathi 46.4 42.4–54.0 44.1 41.5–49.6 Middle Eocene
Bathyergidae 23.5 17.8–26.9 20.9 16.6–24.2 Early Miocene
Caviomorpha 34.0 - 34.0 - Late Eocene
Erethizontidae 23.9 22.3–26.4 22.2 18.9–25.9 Late Oli.-Early Mio.
Erethizontinae 9.5 7.2–14.8 7.7 3.4–9.5 Late Miocene
Coendou + Sphiggurus 5.1 2.7–10.7 4.5 2.6–5.5 Late Mio.-Early Pli.
Coendou 0.1 0.1–0.7 0.1 0.02–0.2 Pleistocene
Sphiggurus 0.2 0.1–0.8 0.2 0.1–0.5 Pleistocene
Octodontoidea 27.0 - 27.0 - Late Oligocene
Echimyidae 20.0 - 20.0 - Early Miocene
Ctenomyidae 5.9 3.9–8.7 5.4 3.7–6.5 Late Miocene
Octodontidae 15.2 10.2–17.9 13.1 10.2–15.1 Middle Miocene
OGL+SCY 12.1 7.0–15.4 10.6 7.4–12.2 Middle-Late Miocene
Cavioidea 25.9 16.7–28.1 23.7 16.1–26.1 Late Oli.-Early Mio.
Caviidae 22.0 16.0–25.7 19.7 15.5–23.3 Early Miocene

Estimates of divergence times expressed in million years. NPRS-LOG: nonparametric rate smoothing with log-scale rates. GRMD: global rate 
minimum deformation method. CL: confidence limits. The geological epochs corresponding to divergence times followed the 1999 Geologic Time 
Scale of the Geological Society of America. Pal.: Paleocene; Eoc.: Eocene; Oli.: Oligocene; Mio.: Miocene; Pli.: Pliocene.
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somes with interstitial Ag-NORs, e.g., thryonomids, some
hystricids, hydrochaerids, cuniculids, chinchillids, and
octodontoids [34,39]. Even the tetraploid octodontid
Tympanoctomys barrerae has a single pair of active NORs,
although signals of the presence of rDNA clusters were
detected in four chromosomes with in-situ hybridization
using rDNA probes [41].

Although the interstitial-Ag-NOR pair is absent in bathy-
ergids, erethizontoids, dasyproctids, and caviids [39]; it
appears to be a plesiomorphic character for the hystrico-
morphs. By plotting the interstitial-Ag-NOR pair condi-
tion as a plesiomorphic character at the root of a
phylogeny of the diversification of Hystricomorpha, as
considered by Brandt [42], based on published informa-
tion and our data, we have found that fewer changes are
needed to reach the present pattern of Ag-NOR distribu-
tion in hystricomorphs, than by plotting the interstitial-
Ag-NOR pair condition as a derived character (Figure 6).
Actually only five Ag-NOR position changes, against seven
in the competing hypothesis, would be necessary to form
the present distribution pattern of this character: one in
the Bathyergidae, one in the Erethizontidae, one in the
Dasyproctidae, and two in the Caviidae.

Sister-group to the erethizontids
In South America, rodents derive from two main distinct
colonizations: the hystricognath, which is well repre-
sented from the end of Eocene to the present; and the
sciurognath (Muroidea, Sciuroidea and Geomyoidea),
which entered the continent later, in a series of invasions
at the end of the Miocene that intensified during the
Pliocene [11]. The hystricognaths are traditionally divided
into two groups: the Old World hystricognaths, the Phio-
morpha; and the New World hystricognaths, the Cavio-
morpha. Although the monophyly of the Hystricognathi
seems to be well resolved, this is not the case for the Phi-
omorpha and Caviomorpha. Woods [14], for example,
considered the term "Caviomorpha" inappropriate,
because it is unlikely that the New World hystricognaths
derived from a single radiation, and suggested that it is
best to discuss them in their superfamilies: Erethizontoi-
dea, Chinchilloidea, Cavioidea, and Octodontoidea.

Several authors have reached conflicting conclusions:
some found support for the monophyly of Phiomorpha
and Caviomorpha (e.g. [43,44]); others found support for
the monophyly of Caviomorpha but not for Phiomorpha
(e.g. [45-47]); and still others found no support for the
monophyly of either of them (e.g. [48,49]).

NOR-bearing chromosomes found in Chaetomys subspinosus, Sphiggurus villosus, Euryzygomatomys spinosus, and Myocastor coypusFigure 5
NOR-bearing chromosomes found in Chaetomys subspinosus, Sphiggurus villosus, Euryzygomatomys spino-
sus, and Myocastor coypus. Comparison of NOR positions in chromosomes of: (a) Chaetomys subspinosus, (b) the ereth-
izontid Sphiggurus villosus, and (c) the echimyids Euryzygomatomys spinosus and Myocastor coypus.
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Phylogeny of the HystricomorphaFigure 6
Phylogeny of the Hystricomorpha. Distribution of the single pair of interstitial-NOR-bearing chromosomes as a character 
in the phylogeny of Hystricomorpha based on published data [43,45-47,51,56-58,81-84] and data herein presented. Blue 
branches indicate lineages with interstitial NORs. Yellow branches indicate lineages with terminal NORs. Blue circles indicate 
taxa with one pair bearing interstitial NORs. Yellow circles indicate taxa with one or more pairs bearing terminal NORs.
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In our analyses, the Hystricognathi formed a mono-
phyletic group with 100% support in all topologies and a
decay index (DI) 33 in MP. According to Zander [50], the
minimum indexes necessary for a binomial confidence
interval (CI) of 0.95 for branch lengths of about 60 steps
are 88% for bootstraps (BP), 91% for Bayesian posterior
probabilities (BPP), and 15 for DI. We thus considered the
monophyly of Hystricognathi to be strongly corroborated
in all topologies.

The Phiomorpha, including the family Hystricidae, was
nonmonophyletic in any of our phylogenies. Instead, we
recovered a monophyletic group joining Hystricidae and
the caviomorphs with moderate support, except for the
BA in which support was strong. The Caviomorpha was
monophyletic in ML and BA, but not in MP. In the most-
parsimonious tree, the phiomorph family Hystricidae was
a sister-group to the caviomorph family Erethizontidae,
although this relationship was poorly supported. In con-
trast, in the MP bootstrap and in the ML and BA analyses,
the Hystricidae was sister-group to a monophyletic Cavio-
morpha, although this relationship was strongly sup-
ported only by the BPP. The most-parsimonious-tree
topology agreed with authors who have advocated against
a single colonization event of South America by hystricog-
naths (e.g. [2,17]), whereas the ML and BA topologies
agreed with authors who have advocated for a single col-
onization event (e.g. [51,52]).

The superfamily Octodontoidea was monophyletic and
strongly supported by all estimators; in fact, this group is
well supported by a number of studies (e.g. [43,46,47]).
The monophyly of the family Octodontidae was strongly
supported by the BPs and the BPP, but only moderately
supported by the DI. The monophyly of the family Cten-
omyidae was strongly supported by all estimators. The
association of Ctenomyidae with Octodontidae, although
recovered in all topologies, had little support in all estima-
tors. Thus, the inclusion of Ctenomys to the Octodontidae
was not supported.

Although the monophyly of the family Echimyidae was
recovered in all topologies, it was strongly supported only
in the ML and BA analyses. Relationships between
echimyid genera were poorly resolved, similarly to previ-
ous studies using the cytochrome b gene [20,53].

The superfamilies Octodontoidea and Cavioidea
appeared as sister-clades in all topologies, but this was
strongly supported only by the BPP. The monophyly of
Cavioidea had strong support in the ML and BA analyses,
whereas the monophyly of Caviidae, although it was
recovered in all topologies, had little support.

The genera Coendou and Sphiggurus formed a mono-
phyletic group, well supported by all indicators except the
DI. In all trees, Coendou was monophyletic with strong
support, as was Sphiggurus. Erethizon was sister-clade to the
group formed by Coendou and Sphiggurus, with strong sup-
port in all topologies.

The phylogenetic reconstructions recovered Chaetomys as
a sister-clade to the erethizontids, with strong support, in
all topologies by all estimators. Furthermore, all the statis-
tical hypothesis tests (T-PTP, Templeton, KH, and SH
tests) supported the monophyly of Chaetomys with the
erethizontids, whereas none of them supported the
monophyly of Chaetomys with the echimyids. These find-
ings support the inclusion of Chaetomys within the family
Erethizontidae, as proposed by Martin [15] and Carvalho
[16]. The basalmost position of Chaetomys within the Ere-
thizontidae suggests that the highly derived morphology
of the hind foot shared by Chaetomys and the other South
American porcupines is a convergent character.

Two subfamilies
The mean of the genetic ML-corrected distances between
the Chaetomys haplotype and the erethizontids was 20.2%
(SD = 0.6%). This value contrasts with the mean of the ML
distances between Chaetomys and the echimyids, 24.7%
(SD = 0.5%), but is similar to the distances between
Echimyidae and Ctenomyidae, 20.0% (SD = 0.6%);
Echimyidae and Octodontidae, 19.2% (SD = 0.9%); and
Ctenomyidae and Octodontidae, 19.1% (SD = 0.6%).
However, although the mean of the ML distances between
echimyid haplotyopes was 17.9% (SD = 1.0%), the great-
est distance between two echimyids was 20.1%, between
Myocastor coypus and Trinomys iheringi.

The level of morphological and molecular divergence
between Chaetomys and the other erethizontids, supports
the inclusion of Chaetomys in its own subfamily within the
family Erethizontidae. We shall therefore refer to Chaeto-
mys as Chaetomyinae and to the other erethizontids as
Erethizontinae.

The distances of Chaetomyinae and Erethizontinae dif-
fered considerably when compared with other taxa.
Between Chaetomyinae and other caviomorph families,
the means of ML distances ranged from 24.4 to 26.2%;
and between Erethizontinae and other caviomorphs, the
means of ML distances ranged from 22.3 to 23.1%.
Between Chaetomyinae and Hystricidae, the ML distance
was 22.4%; and between Erethizontinae and Hystricidae,
the mean of ML distances was 21.4% (SD = 0.4%). Only
between Chaetomyinae and Bathyergidae, the mean of
ML distances, 24.8% (SD = 0.5%), was similar to the
mean of ML distances between Erethizontinae and Bathy-
ergidae, 24.5% (SD = 0.4%). Finally, the mean of ML dis-
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tances between Chaetomyinae and Ctenodactylidae was
26.1% (SD = 0.1%); whereas between Erethizontinae and
Ctenodactylidae it was 24.7% (SD = 0.4%).

The levels of divergence between Chaetomys and the other
taxa in the sample were rather high compared to its sister-
clade, the Erethizontinae. If we assume that divergence
times between two lineages and their outgroup are the
same, any discrepancy in the branch lengths should be
ascribed to differences in substitution rates. Our data sug-
gest, therefore, that the higher divergence levels in Chaeto-
mys may be the result of higher evolutionary rates.

One could argue that the sequence of Chaetomys presented
herein might, in fact, be an inactive copy of the mitochon-
drial cytochrome b gene, that is, a pseudogene. This could
explain the high substitution rates, because of a lack of
functional constraints. Nevertheless the base frequencies
in the sequence of Chaetomys (T = 30.4%, C = 27.8%, A =
30.6%, G = 11.2%) are similar to the mean of the frequen-
cies of the entire sample, although with fewer Gs than any
other sequence in the sample. In the third-codon position
the frequency of Gs is 2.1%, a bias commonly found in
the cytochrome b of other rodents [18,19], which con-
trasts with the frequencies of Gs in the first and second
positions, 18.9% and 12.6%, respectively. Furthermore,
the amino-acid sequence resulting from the translation of
the nucleotide sequence of Chaetomys, did not contain any
anomalous premature stop codon or changes in the read-
ing frame.

The mean of ML distances between Erethizon dorsatum and
species of Coendou and Sphiggurus was 13.7% (SD =
0.4%). This is less than the smallest distance between two
octodontids, 14.4% between Octodontomys gliroides and
Spalacopus cyanus. The mean of ML distances between spe-
cies of Coendou and Sphiggurus was 11.2% (SD = 0.1%).
These distances are at the same level as the distance
between the two species of Ctenomys, 11.1%; less than the
smallest distance between two echimyids, 15.8% between
Kannabateomys amblyonyx and Euryzygomatomys spinosus;
and less than the distances between caviid, bathyergid, or
ctenodactylid genera, 19.2, 18.8, or 16.7%, respectively.
Even though we found strong support for a reciprocal
monophyly between Coendou and Sphiggurus, although
the monophyly of Coendou and Sphiggurus as a group was
strongly supported by all estimators but the DI, the levels
of divergence do not support the separation of these gen-
era. A larger sample, including Echinoprocta and more spe-
cies of Coendou and Sphiggurus, will be necessary to clarify
this matter.

The origin of hystricognaths dating from the Middle
Eocene is consistent with most previous studies
[43,46,54,55]. Our estimates for the origin of cavio-

morphs dated from the Late Eocene, whereas previous
estimates range from the Middle Eocene [47,56], to the
Late Eocene [47,55-58], or the Early Oligocene [46,59].
The separation of Echimyidae from Octodontidae and
Ctenomyidae would have occurred in the Late Oligocene,
in nearly the same epoch as the separation of Caviidae
and Dasyproctidae, in the Late Oligocene to the Early
Miocene.

The separation of Erethizontidae into Chaetomyinae and
Erethizontinae would have occurred in the Late Oligocene
to the Early Miocene, in nearly the same epoch as the ori-
gin of the Echimyidae and the Caviidae, in the Early
Miocene. Curiously the separation of Erethizon from the
rest of the Erethizontinae took place in the Late Miocene,
which means, before the Great American Interchange that
followed the formation of the Central American Land-
bridge, about 3.5 million years ago; indicating that its lin-
eage may have diverged before migrating to the north. The
separation of Coendou and Sphiggurus would have
occurred in the Late Miocene to the Early Pliocene.

Conclusion
These new data from sequencing of the cytochrome b gene
and karyotyping of a female thin-spined porcupine, Cha-
etomys subspinosus, confirm that this species does not
belong to the family Echimyidae. Instead, it is related to
the Erethizontidae, and belongs to a sister-clade to the
other erethizontids. Nevertheless, its basalmost position
relative to the Erethizontidae, its high levels of sequence
divergence, and its morphological distinctiveness suggest
that Chaetomys belongs to an early radiation of the Ereth-
izontidae that may have occurred in the Early Miocene,
from 23 to 21 million years before the present, and
should be allocated to a subfamily of its own, the sub-
family Chaetomyinae, sister to the subfamily Erethizonti-
nae, which contains the other erethizontid genera.

Methods
Karyotypes
We karyotyped a single female of Chaetomys subspinosus.
The specimen, which had been hit by a car, was found by
Bruno Martins in an Atlantic Rainforest fragment near the
campus of the Universidade Federal da Bahia (UFBA), in
the city of Salvador, state of Bahia, northeastern Brazil.
The specimen was identified by Prof. Pedro Luís Bernardo
da Rocha (UFBA) and sent alive to our laboratory for anal-
yses.

After in-vivo colchicine treatment, chromosome prepara-
tions were obtained from bone marrow and spleen. Chro-
mosome staining was done using Giemsa. Estimation of
the fundamental number (FN) assumed that the X chro-
mosome is biarmed (see results). Staining of the nucleolar
organizer region used the silver-nitrate (Ag-NOR) tech-
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nique. G-banding was carried out following routine pro-
tocol.

Taxon sampling, DNA extraction, amplification and 
sequencing
For the molecular analyses, our sample consisted of one
specimen of Chaetomys subspinosus; two specimens of the
erethizontid Sphiggurus villosus; one specimen of the ereth-
izontid Erethizon dorsatum; one specimen of each of the
following six species of echimyids: Euryzygomatomys spino-
sus, Kannabateomys amblyonyx, Myocastor coypus, Proechimys
roberti, Thrichomys apereoides, and Trinomys iheringi; and
one specimen of the caviid Cavia aperea (Table 4). DNA of
the specimens was isolated from liver or muscle preserved
in ethanol or in an ultrafreezer, using 7.5 M ammonium
acetate and isopropanol, following Fetzner [60]. Two

overlapping fragments of the complete mitochondrial
cytochrome b DNA were amplified in 25 μl of polymerase
chain reaction (PCR) solution, using several combina-
tions of the primers MVZ 05, MVZ 14, MVZ 16, MVZ 51,
MVZ 127, and MVZ 108 [see Additional file 1] under the
following temperature regime: initial denaturation 94°C/
5 min, then 39 cycles of 94°C/30 s, 48°C/45 s, 72°C/1
min, and final extension at 72°C/10 min.

After an agarose gel check, PCR products were cycle-
sequenced using the ABI PRISM Big Dye Terminator v 3.0
kit (Applied Biosystems) through 25 cycles of 95°C/30 s,
50°C/15 s, 60°C/4 min. Sequencing primers were the
same as were used in the PCR amplifications. After purifi-
cation in 75% isopropanol, and precipitation in 70% eth-
anol, the cycle-sequencing products were resuspended in

Table 4: Specimens used in the phylogenetic analyses of cytochrome b, corresponding GenBank Accession Numbers, locality, 
geographical coordinates and reference data.

Taxon GenBank Accession Number Locality Lat. Long. Reference

Ctenodactylidae
Ctenodactylus vali AJ389532 -- [22]
Massoutiera mzabi AJ389533 -- [22]
Bathyergidae
Bathyergus janetta AF012241 De Riet, SAF -30.1 17.4 [85]
Cryptomys damarensis U87526 Okavango Delta, BOT -19.5 23.2 [86]
Hystricidae
Hystrix africaeaustralis X70674 -- [19]
Erethizontidae
Chaetomys subspinosus EU544660 Salvador, BA -13.0 -38.5 this study
Coendou bicolour U34852 Eirunepé, Rio Juruá, AM -6.6 -60.9 [20]
Coendou prehensilis AF411581 UHE Manso, MT -15.5 -55.8 [7]
Ertehizon dorsatum FJ357428 -- this study
Sphiggurus villosus EU544661 UHE Rosal, ES -20.9 -41.7 this study
Sphiggurus villosus EU544662 Biritiba Mirim, SP -23.6 -46.0 this study
Sphiggurus villosus AF411580 Sumidouro, RJ -22.1 -42.7 [7]
Echimyidae
Euryzygomatomys spinosus EU544667 Biritiba Mirim, SP -23.6 -46.0 this study
Isothrix bistriata L23355 Upper Rio Urucu, AM -4.9 -65.3 [87]
Kannabateomys amblyonyx EU544665 Biritiba Mirim, SP -23.6 -46.0 this study
Myocastor coypus EU544663 Biritiba Mirim, SP -23.6 -46.0 this study
Proechimys roberti EU544666 Vila Rica, MT -9.9 -51.2 this study
Thrichomys apereoides EU544668 Januária, MG -15.5 -44.4 this study
Trinomys iheringi EU544664 Boracéia, SP -22.2 -48.8 this study
Octodontidae
Octodontomys gliroides AF370706 Tilcara, Jujuy, ARG -23.6 -65.4 [88]
Spalacopus cyanus AF007061 -- [89]
Tympanoctomys barrerae AF007060 -- [89]
Ctenomyidae
Ctenomys frater AF007045 Tarija, BOL -21.5 -64.7 [89]
Ctenomys haigi AF422920 Perito Moreno, ARG -41.1 -71.0 [53]
Caviidae
Cavia aperea EU544669 Biritiba Mirim, SP -23.6 -46.0 this study
Dolichotis patagonum AY382787 Santa Cruz, ARG -50.0 -68.5 [84]
Dasyproctidae
Myoprocta pratti U34850 Altamira, Rio Juruá, AM -6.6 -68.9 [20]

Countries: ARG, Argentina; BOL, Bolivia; BOT, Botswana; PAR, Paraguay; PER, Peru; SAF, South Africa; VEN, Venezuela. States in Brazil: AC, 
Acre; AM, Amazonas; BA, Bahia; ES, Espírito Santo; MG, Minas Gerais; MT, Mato Grosso; RJ, Rio de Janeiro; SP, São Paulo.
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TSR buffer (Applied Biosystems) and run on an ABI
PRISM 3700 DNA Analyzer automated sequencer
(Applied Biosystems).

GenBank sequences completed our dataset, adding 14
samples from eight hystricognath families: Erethizontidae
(Coendou bicolor, Coendou prehensilis, and Sphiggurus villo-
sus), Echimyidae (Isothrix bistriata), Ctenomyidae (Cteno-
mys frater and Ctenomys haigi), Caviidae (Dolichotis
patagonum), Dasyproctidae (Myoprocta pratti), Octodonti-
dae (Octodontomys gliroides, Spalacopus cyanus, and Tym-
panoctomys barrerae), Hystricidae (Hystrix africaeaustralis),
and Bathyergidae (Bathyergus janetta and Cryptomys dama-
rensis). As the outgroup we used two sequences, also from
GenBank, from ctenodactylids: Ctenodactylus vali and Mas-
soutiera mzabi. This family is considered a sister group to
the Hystricognathi [51].

The sequences included at least one sample of each extant
echimyid subfamily recognized by Woods and Kilpatrick
[9]: Dactylomyinae (Kannabateomys amblyonyx), Echimyi-
nae (Isothrix bistriata), and Eumysopinae (Euryzygomato-
mys spinosus, Proechimys roberti, Thrichomys apereoides, and
Trinomys iheringi). We also added Myocastor coypus, which
is at times assigned to the subfamily Myocastorinae
within the Echimyidae [17], or within the Capromyidae
[61]; or to its own family, the Myocastoridae [9]. The spec-
imens used in the present study, corresponding GenBank
Accession Numbers, localities (when available) with geo-
graphical coordinates, and respective references are listed
in Table 4.

A possible pseudogene
While amplifying the mitochondrial cytochrome b gene,
we noticed that Chaetomys subspinosus samples amplified
using MVZ 05 and MVZ 16 primers repeatedly formed two
bands rather than one, in the check gel for PCR products.
One of the bands had the expected size of approximately
800 bp, whereas the second band had approximately 600
bp and was often brighter, being occasionally the only
fragment to be recovered.

We concluded that this unspecific band might represent a
pseudogene, that is, an inactive copy of the cytochrome b
gene inserted within nuclear or mitochondrial genomes.
Therefore we proceeded with amplification of samples
from Chaetomys subspinosus with different primer combi-
nations, and obtained successful results using MVZ 51
and MVZ 16 primers. The sequence obtained with these
primers confirmed that the sequence of the priming site
corresponding to MVZ 05 in Chaetomys subspinosus is dif-
ferent from the corresponding sequence of this primer.

Alignment and phylogenetic analyses
For each specimen we obtained multiple strands that were
assembled in the program ABI PRISM Sequence Navigator
version 1.0.1 (Applied Biosystems). Alignment was per-
formed using the program Clustal X version 1.83 [62]
with default parameters.

Amino-acid translation was done through the program
MacClade 4.08 [63], to verify the quality of sequences,
confirming the correct reading frame positions, and find-
ing unexpected stop codons. We used the program MEGA
version 4.0 [64] to obtain estimates of nucleotide compo-
sition, nucleotide pair frequencies, and codon usage. To
test for the presence of saturation, we produced, for each
codon position, plots of transitions and transversions ver-
sus Kimura's 2-parameter pairwise distances; and imple-
mented the test by Xia et al. [21]. Both methods were
performed in the program DAMBE version 5.0.23 [65].

Phylogenetic reconstructions using maximum parsimony
(MP) and maximum likelihood (ML) as optimality crite-
ria were carried out with PAUP* version 4.0b10 [66], and
Bayesian analyses (BA) were carried out with MrBayes ver-
sion 3.1.2 [67].

All characters were equally weighted in the MP analyses,
and the heuristic search was implemented with 10,000
replicates of random sequence addition, holding 100 trees
at each step during stepwise addition, and the tree-bisec-
tion-reconnection (TBR) branch-swapping algorithm.

The general time reversible model with a proportion of
invariable sites and a discrete gamma distribution for the
variable sites (GTR+I+Γ) was chosen based on hierarchical
likelihood ratio tests and the Akaike information criterion
conducted with Modeltest version 3.7 [68] for ML analy-
ses and with MrModeltest version 2.3 [69] for Bayesian
analyses. The model parameters were used to execute a ML
heuristic search with 1,000 random addition replicates,
holding 2 trees at each step, and applying the TBR algo-
rithm.

To account for the different evolutionary processes occur-
ring at each of the three codon positions, Bayesian analy-
ses were performed with one distinct GTR+I+G model per
codon position, with unlinking of base frequencies, GTR,
and parameters. Markov chain Monte Carlo (MCMC)
sampling was performed for 3,000,000 generations with
four simultaneous chains.

The robustness of nodes was assessed by nonparametric
bootstrap percentages (BP) after 10,000 pseudoreplicates
with 10 random additions for MP using PAUP*4.0b10
[66] and 1,000 pseudoreplicates for ML using PHYML ver-
sion 2.4.4 [70]. For MP we also calculated the decay index
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(DI), or Bremer support [71] using the program TreeRot
version 3 [72]. Bayesian posterior probabilities (BPP)
were calculated from trees that were sampled every 100
generations, after removing the first 5,000 generations as
a "burn-in" stage.

As an approximation of minimum values required for a
95% binomial confidence interval for Bootstrap, Decay
Index, and Bayesian posterior probabilities, we used cal-
culations obtained from simulations on artificial 4-taxa
data sets for internode lengths of 3 through 60 steps [50].
Minimal values for reliability varied from 88 to 100% for
BP, from 3 to 15 for DI, and from 91 to 100% for BPP,
depending on the branch lengths.

In order to test for two competing hypotheses: mono-
phyly of Erethizontidae including Chaetomys, versus
monophyly of Echimyidae including Chaetomys, we per-
formed the permutation tail probability (T-PTP) [23] test
with 100,000 replicates, the Templeton test [24], and the
Kishino-Hasegawa (KH) [25] and Shimodaira-Hasegawa
(SH) [26] tests.

Molecular evolutionary rates and molecular dating
To investigate whether a global molecular clock applied to
our data, we conducted under PAUP*4.0b10 [66] a likeli-
hood ratio test between log-likelihoods of clock-con-
strained and non-constrained trees. Estimates of
divergence times were calculated using methods based on
MCMC Bayesian analyses and non-Bayesian methods.
Under Bayesian analyses, dates were estimated either
using rates conformed to a molecular clock (CLOC); or
using rates uncorrelated, with the rate in each branch
independently drawn from a lognormal distribution
(UCLN), as described by Rambaut and Drummond [73],
both models were implemented in the program BEAST
version 1.4.8 [74]. As non-Bayesian methods we used a
variant of the nonparametric rate smoothing [75] which
compares rates on log scale (NPRS-LOG), and the global
rate minimum deformation (GRMD); both methods were
implemented in the program Treefinder, version of June
2008 [76].

The methods used to estimate divergence times allowed
the incorporation of paleontological constraints into the
analyses. As a first calibration point we set the cavio-
morph radiation in the Late Eocene-Early Oligocene, ca.
34 Ma (Mustersan SALMA – South America Land Mam-
mal Age, as dated by Kay et al. [77], based on the recent
discovery of members of Erethizontoidea, Cavioidea, and
Octodontoidea superfamilies from the Eocene Santa Rosa
local fauna in Amazonian Peru [78]. As a second calibra-
tion point we set the octodontoid most recent common
ancestor (MRCA) in the Late Oligocene, ca. 27 Ma
(Deseadan SALMA) [79]. Finally, as a third calibration

point we set the echimyid MRCA in the Early Miocene, ca.
20 Ma (Colhuehuapian SALMA) [80].
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