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ABSTRACT
We examined four suspected cases of facultative parthenogenesis in three species of
a neotropical lineage of pitvipers of the Bothrops atrox group. Reproduction without
mating was observed in captive females of B. atrox, B. moojeni and B. leucurus housed
alone for seven years (the two former species) and nine years (the latter one). In addition
to the observation of captivity data, we investigatedmolecularly this phenomenon using
heterologousmicrosatellites. DNAwas extracted from themothers’ scales or liver, from
embryo and newborn fragments, and yolked ova. Four of the microsatellites showed
good amplification using Polymerase Chain Reaction and informative band segregation
patterns among each mother and respective offspring. Captivity information, litter
characteristics (comparison of the number of newborns, embryos and yolked ova) and
molecular data altogether agreed with facultative parthenogenesis predictions in at least
three out of the four mothers studied: B. atrox (ID#933) was heterozygous for three out
of the four markers, and the sons S1 and S2 were homozygous; B. moojeni (BUT86) was
heterozygous for two out of four markers, offspring S1, S3, E2, and E4, and O1 to O6
were homozygous; and B. leucurus (MJJS503) was heterozygous for three out of four
markers, and son E1 and O1 were homozygous. B. moojeni (BUT44) was homozygous
for all loci analyzed in the mother and offspring, which although not informative is also
consistent with parthenogenesis. This study represents the first molecular confirmation
of different pitviper species undergoing facultative parthenogenesis among Neotropical
endemic snakes.

Subjects Biodiversity, Developmental Biology, Genetics, Molecular Biology, Zoology
Keywords Serpentes, Squamata, Neotropical snakes, B. moojeni, B. leucurus, Automixis, Genetic
markers, Microsatellites

INTRODUCTION
Parthenogenesis (virgin birth) sensu lato has been defined as amode of asexual reproduction
(Vrijenhoek, 1999; Avise, 2008). True parthenogenesis is sperm-independent production
of offspring, in contrast to other unisexual reproductive modes, such as gynogenesis
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and hybridogenesis, in which sperm is needed at some level (Neaves & Baumann, 2011).
Obligate parthenogenesis (OP) is relatively more common in plants and invertebrates
(Bell, 1982), occurring only in some reptilian lineages within vertebrates (Kearney, Fujita &
Ridenour, 2009). The only known obligate parthenogenetic snake lineage is the Brahminy
blind snake, Indotyphlops braminus, previously known as Ramphotyphlops braminus
(McDowell, 1974; Nussbaum, 1980; Wynn, Cole & Gardner, 1987; Ota et al., 1991).

Switching between sexual and asexual reproduction is called facultative parthenogenesis
(FP), and it was first reported in turkey and chicken (Olsen, 1975; Neaves & Baumann,
2011). Several cases of facultative parthenogenesis in vertebrates have been described
considering the last twenty years or so, suggesting that the detection of this phenomenon
can increase if more species are investigated. Nowadays, it is known to occur in a number of
vertebrate species fromdifferent lineages (Kearney, Fujita & Ridenour, 2009): elasmobranch
fishes (e.g., Chapman et al., 2007; Chapman, Firchau & Shivji, 2008; Feldheim et al., 2010;
Robinson et al., 2011; Portnoy et al., 2014; Fields et al., 2015; Harmon et al., 2015; Dudgeon
et al., 2017; Feldheim et al., 2017; Straube et al., 2016), lizards (e.g., Lenk et al., 2005; Watts
et al., 2006; Lampert, 2008; Hennessy, 2010;Wiechmann, 2012; Grabbe & Koch, 2014;Miller
et al., 2019), birds (Olsen, 1967; Olsen, 1970; Olsen, 1975; Schut, Hemmings & Birkhead,
2008; Parker & McDaniel, 2009; reviewed in Ramachandran & McDaniel, 2018), and snakes
(Booth & Schuett, 2016; Shibata et al., 2017; Allen, Sanders & Thomson, 2018; Seixas et al.,
2020).

Although facultative parthenogenesis had been suggested as potentially adaptive,
facilitating the establishment of a population prior to the introduction of genetically diverse
conspecifics (Hedrick, 2007), some authors hypothesized facultative parthenogenesis as a
consequence of reproductive error and/or a side-effect of isolation from males (Avise,
2008; Lampert, 2008). More recently, however, cases of facultative parthenogenesis in
wild populations of snakes, described in Agkistrodon contortrix and A. piscivorus (Booth &
Schuett, 2011; Booth et al., 2012), ruled out the hypothesis that only captive females could
undergo this phenomenon (Booth & Schuett, 2016).

Facultative parthenogenesis induces elevated homozygosity, depending on the exact
mechanism, possibly precluding its persistence for long evolutionary periods (Hedrick,
2007), and even though facultative parthenogenesis increases the risk for lower fitness
(Hedrick, 2007; Kearney, Fujita & Ridenour, 2009), some authors suggest that this feature
may have an important evolutionary role in purging deleterious alleles, therefore
diminishing the population’s genetic load (Hedrick, 1994; Crnokrak & Barrett, 2002).

Parthenogenesis in Bothrops
Bothrops is a Neotropical endemic genus (Martins, Marques & Sazima, 2002; and references
therein), viviparous, which produces litters of two to 86 offspring in the summer and
autumn (Almeida-Santos & Salomão, 2002; Barros, Rojas & Almeida-Santos, 2014; Silva et
al., 2019).

Phylogenetic studies performed by Fenwick et al. (2009), Carrasco et al. (2012) and
Alencar, Quental & Grazziotin (2016) showed that B. atrox, B. moojeni, and B. leucurus
belong to the atrox group. Bothrops atrox occurs throughout most of the northern part
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of South America (Wüster, Thorpe & Puorto, 1996; Campbell & Lamar, 2004; Nogueira
et al., 2019), B. moojeni occupies central and southeastern Brazil and adjacent Paraguay
and Argentina (Campbell & Lamar, 2004; Nogueira et al., 2019), and B. leucurus is mainly
distributed throughout northeastern Brazil (Carvalho Jr & Nascimento, 2005; Lira-da Silva,
2009; Nogueira et al., 2019).

Batistic et al. (1999), Almeida-Santos & Salomão (2002) and Vaughan & Steele (2014),
based on captivity information, suggested that parthenogenesis had occurred in B. moojeni,
B. insularis, and B. asper, respectively. Nevertheless, the phenomenon was not confirmed
with molecular data in any of the cases.

In this study, we employed molecular markers (microsatellites) to investigate the
hypothesis of facultative parthenogenesis in four suspected cases of Neotropical pitvipers
genus Bothrops: B. atrox (one specimen), B. moojeni (two specimens), and B. leucurus
(one specimen), altogether with captivity information available for each species analyzed
genetically.

MATERIAL AND METHODS
Specimens studied and captivity history
Bothrops atrox
The B. atrox female (ID #933) was born in Rondônia state, Brazil and was formerly housed
in Morungaba (São Paulo state, Brazil) since its birth in 2006. It was subsequently held in
isolation until it was transferred to the Criadouro Conservacionista de Americana, where
it was again housed in isolation. In April 2010, the mother gave birth to a fully developed
and apparently normal neonate, a malformed embryo, and five yolked ova. The neonate
died in June 2010. Almost one year later, in March 2011, this female gave birth to a neonate
(born dead) and ten yolked ova. In March 2013, the female gave birth to a living male with
malformation and 23 yolked ova (Table 1).

Bothrops moojeni
Two independent cases were observed in B. moojeni: the first female (BUT44) was born
in captivity in 2006 at the Sorocaba Zoo (Sorocaba, São Paulo state) and donated to the
Aquário Municipal de Campinas (Campinas, São Paulo state) while still a newborn; and
the animal has been held at that location ever since. In January 2010, the female gave birth
to five neonates (fully formed with minor abnormalities), twenty-one expelled yolked ova
and one partially formed embryo (Fig. S1). In March 2011, the same isolated female had
three more offspring, of which one died and two survived. In March 2013, the female gave
birth to four dead offspring and eight unpreserved yolked ova. We analyzed molecularly
the mother and three offspring (Table 1).

The second B. moojeni female (BUT86) was born in the Museu Biológico, Instituto
Butantan, in December 2006; and in August 2013, it was donated to the Laboratório
de Ecologia e Evolução at the same Institute. In July 2015, the first litter of this mother
encompassed 24 yolked ova. In October 2015, another yolked ovum was found (we did
not have access to these samples for genetic study). In October 2016, the female gave birth
to an alleged living offspring, an embryo, and 39 yolked ova. In September 2018, it gave
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Table 1 Data on reproductive females of the genus Bothrops that may indicate facultative parthenogenesis. Included (+)/Not included (-)
means that the samples were or not included in the present study.

Species
Mother
(Mo)

Lab
no.

Mother’s
birth

Offspring
birth
date

Offspring Embryos Yolked
Ova
Expelled (O)

Sex in
cluth

Included/
Not
includedAlive Dead

B. atrox ID#933 2006 2010 (April) 1 (S1) – 1 5 Male +
2011 (March) 1 – 10 ? –
2013 (March) 1 (S2) – Male +

B. moojeni BUT44 2006 2010 (January) 6* 1� 21 – –
2011 (March) 3 1 – – ? +
2013 (March) 4 – 8 Males +

B. moojeni BUT86 2006 2015 (July, Oct.) – – 24 – –
2016 (Oct.) 1 (S1) – 1 (E2)* 39 (O1–O3) Male +
2018 (Sept.) 1 (S3) 1 (E4) 31 (O4–O6) Male +

B. leucurus MJJS503 2010 2019/(Feb.) – 1 (E1)* 31 (O1) ? +

Notes.
Rhombus (�) indicates a partially formed individual.
Asterisks (*) indicate (i) fully-formed individuals with abnormalities (and after the birth, the mother BUT44 ate the offspring) and (ii) sex was not detectable in embryos.
Question mark (?) indicates that the sex was not defined because (i) the mother ate the offspring, or (ii) the sons were malformed and composed of an amorphous mass in the
terminal region of the body, or (iii) the animals died during the weekend and they were found deteriorated physically on Monday.

birth to a neonate (who died about 3 h after birth), an embryo, and 31 yolked ova. We
analyzed molecularly the mother, one neonate, an embryo, and three ova from 2016; and
one neonate, an embryo, and three ova from 2018 (Table 1).

Bothrops leucurus
The B. leucurus female (MJJS503) arrived at the Museu Biológico, Instituto Butantan, as a
young specimen in March 2010 and was isolated from males for several years. In February
2019, it gave birth to a malformed neonate (embryo) and 31 yolked ova. The mother, the
embryo and the content of one ovum were analyzed using molecular markers (Table 1).

In some cases, the sex of descendants from the respective putative parthenogenetic
mother was not detected because: (i) the mother ate the offspring, or (ii) the descendants
were malformed and composed of an amorphous mass in the terminal region of the
body, or (iii) the animals were born during the weekend, and they were found dead and
disintegrated on the next Monday (Table 1).

All individuals studied herein were approved for the Ethics Committee for the Use
of Animals of Instituto Butantan (CEUAIB) under the approval numbers 14/1260 and
2141020819.

Methods
In the new four suspected cases reported herein, the presence of testes in stillborn and viable
offspring was observed (when possible) by microscopy. For the molecular analyses, DNA
was extracted from scales, embryo fragments and yolked ova using a modified Chelex c©100
(BioRad) protocol (Walsh, Metzger & Higuchi, 1991). Proteinase K (20 mg/mL—Thermo
Fisher) was added for tissue digestion at 56 ◦C overnight (24, 48 and 74 h). Polymerase
chain reactions (PCR) were carried out in a LifeECO—Bier thermocycler, using nine
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Table 2 Microsatellite primers and respective species fromwhich they were obtained, used for amplifying sequences of the mothers and the re-
spective offspring for the suspected parthenogenesis cases in Bothrops atrox, B. moojeni, and B. leucurus.

Locus Species DNA
strand

Primer sequences Annealing
(T ◦C)

References

Microsatellites

Ac4335 Agkistrodon contortrix 5′ ATC CTT CCC CAA GCC AAG G 62 Castoe et al. (2010)
3′ GCT GGA GAC TGG AGA AGA GAG C

MR102 Bothrops marmoratus 5′ CTC TTT TGC AGT TAT GGC CC 56 Machado (2015)
3′ TGG CTT AGG AAG ACA CTG AAA

Bi52.13 B. insularis 5′ TAC TGT ATT GCA CCG GCT AAG G 62; 56a K Zamudio (pers. comm., 2013)
3′ AAT CTC CTG TTT TAA TGC TAC TGA A

Bi60.3 B. insularis 5′ CTT TGC CGC CGA TGG TG 60 K Zamudio (pers. comm., 2013)
3′ GGT TGG GCC TGT GGA CTG TT

Notes.
aAnnealing temperature varied according to the species: 62 ◦C for B. moojeni and 56 ◦C for B. leucurus.

heterologous microsatellite primers developed for Agkistrodon contortrix (Castoe et al.,
2010), Bothrops marmoratus (Machado, 2015) and B. insularis (K. Zamudio, pers. comm.,
2013) from which only four amplified (Table 2). PCR were performed in final volumes of
15 µL with the following specifications: 2,625 µL H2O, 1.5 µL 10× Buffer, 0.60 µL MgCl2
(50 mM-Invitrogen), 0.3 µL dNTP (5 mM-Invitrogen), 1.2 µL primer forward (2.5 µM),
1.2 µL primer reverse (2.5 µM), 0.075 µL Platinum Taq polymerase (Invitrogen), and 7.5
µL of DNA (30 ng/µL). PCR conditions for all the primers consisted of denaturation at 95
◦C for 5 min., followed by 35 cycles of (i) denaturation at 94 ◦C for 1 min.; (ii) annealing
varied from 56 to 62 ◦C (Table 2) for 1 min.; and (iii) extension at 72 ◦C for 1 min.,
with a final extension at 72 ◦C for 5 min. PCR products and a molecular weight standard
(Low Mass Ladder and 1 kb—Life Technologies) were loaded into individual wells of a
2.2 or 2.5% agarose gel prepared with 1x TBE and Gel Red (Biotium). Amplified DNA
was subsequently run at 85 volts in an electrophoresis apparatus for 70 min (Bi 52.13 and
Bi 60.3 microsatellites) and 90 min (Ac4335 and MR102 microsatellites), using the same
buffer used for gel preparation. The results were visualized under UV light, and the images
saved as digital pictures.

The sizes of amplified bands for each individual were obtained using GelQuant.NET
v1.7.8 (biochemlabsolutions.com), by comparing to the DNA bands of the molecular
weight standard as depicted above.

RESULTS
Nine loci (Ac4335, MR102, Bi60.3, Bi60.6, Bi52.7, Bi52.8, Bi52.13, Bi52.17, Bi52.22) were
tested, however only Ac4335, MR102, Bi52.13, and Bi60.3 generated gel patterns with
bands segregating between mother and offspring (Table S1).

In B. atrox, four loci (Ac4335, MR102, Bi52.13, and Bi60.3) were informative (Fig. 1).
The mother was heterozygous for three loci (Ac4335, MR102, Bi60.3), whilst the offspring
was homozygous (Figs. 1A, 1B and 1D). For locus Bi52.13, the mother and the descendants
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Figure 1 Bothrops atrox (ID# 933) PCRmicrosatellite bands in electrophoretic agarose gels. (A–D),
where Mo, putative parthenogenetic mother; S1 and S2, sons of Mo; (C-), negative control. The first lane
in all figures is a molecular weight standard. Loci: (A) Ac4335, (B) MR102, and (C) Bi52.13 run with Low
Mass Ladder 1kb and (D) Bi60.3 with Low Mass Ladder 2 kb.

Full-size DOI: 10.7717/peerj.10097/fig-1

S1 and S2 shared the same band (Fig. 1C). We could not obtain results using the marker
Bi60.3 for the second son (S2).

The mother B. moojeni (BUT44) and its offspring from different litters shared the
same homozygous band for the loci tested MR102 and Bi52.13 (Fig. S2) being, therefore,
uninformative for testing facultative parthenogenesis. For the second case of B. moojeni
(BUT86), the mother was heterozygous for two loci (Ac4335 andMR102) and the offspring
was homozygous (Figs. 2A, 2B and 2C). Each litter, from 2016 and 2018, showed individuals
with different bands for the locus Ac4335, with each band being shared with the mother
(Fig. 2A). Regarding locus MR102, the 2016 litter (which includes the descendants S1 and
E2—Fig. 2B, and three ova: O1, O2 and O3—Fig. 2C) and 2018 litter (which includes
the descendants S3 and E4—Fig. 2B, and three ova: O4, O5 and O6—Fig. 2C)—the same
band was observed in four of the five individuals from the 2016 litter; likewise, O3 shared
the same band as four out of the five individuals (S3, E4, O4, and O5) from the 2018
litter (Figs. 2B–2C), while an ovum (O6) was also different from the rest of its generation.
Regarding locus Bi52.13, the mother and offspring shared the same band (Fig. 2D). The
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Figure 2 Bothrops moojeni (BUT86) PCRmolecular marker bands in electrophoretic agarose gels. (A–
D), where Mo, putative parthenogenetic mother; S1, E2, S3 and S4, sons of Mo (S1 and E2 were born in
2016, and S3 and E4 were born in 2018); O1–O6: ova (O1–O3 from 2016 litter, and O4–O6 from 2018 lit-
ter); (C-): negative control. The first lane in all figures is a molecular weight standard. Loci: (A) Ac4335.
(B–C) MR102. (D) Bi52.13; all the markers were run together with Low Mass Ladder 1 kb.

Full-size DOI: 10.7717/peerj.10097/fig-2

locus Bi60.3 evinced the same homozygous band being shared by mother and offspring
(Fig. S3).

In the case of B. leucurus, the mother was heterozygous for three markers (Ac4335,
MR102, Bi52.13) and homozygous for marker Bi60.3; the son (E1) was homozygous
sharing one band with the mother for each of the four markers (Figs. 3A–3D). An ovum
was homozygous for the same band of the son for loci MR102, Bi52.13, and Bi60.3, which
were also shared with the mother (Figs. 3B, 3C and 3D).

DISCUSSION
Parthenogenesis, initially conceived as most common in plants and invertebrates, has
been increasingly detected within vertebrates (Booth & Schuett, 2016; Ramachandran &
McDaniel, 2018). In some of these cases, the offspring present delayed and unorganized
development (Ramachandran & McDaniel, 2018).

In the present study, considering both captivity andmolecular data altogether, the results
confirmed for the first time facultative parthenogenesis in an endemic Neotropical genus of
pitvipers (Bothrops), specifically in three species of the same clade (B. atrox group). Thus,
molecular data supported the assumption that B. atrox (ID #933), B. moojeni (BUT86),
and B. leucurus (MJJS503) offspring were born as the result of facultative parthenogenesis
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Figure 3 Bothrops leucurus (MJJS503) PCRmolecular marker bands in electrophoretic agarose gels.
(A–D), being Mo, putative parthenogenetic mother; E1, son (embryo) of Mo; O1, one of the yolked ova;
(C-), negative control. The first lane in all figures is a molecular weight standard. Loci: (A) Ac4335, (B)
MR102 and (C) Bi52.13 with Low Mass Ladder 2kb, and (D) Bi60.3 with Low Mass Ladder 1 kb.

Full-size DOI: 10.7717/peerj.10097/fig-3

since the offspring showed homozygosity for heterozygous loci in the mother (Figs. 1A,
1B, 1D, 2A, 2B and 3A–3C).

Furthermore, other features concerning the offspring were also found here: (i) none of
the mothers had been housed with males (ruling out events of long-term sperm storage),
(ii) there was a relatively large number of undeveloped ova, and (iii) only alleles present in
the mother (either in homozygosity or heterozygosity) were observed in the offspring.

After considering those points, it is also worth highlighting that captivity data of all four
cases approached herein agreed with the facultative parthenogenesis predictions outlined
by Booth & Schuett (2011), given that the two amplified loci were found homomorphic in
themother B. moojeni (BUT44) and its sons. So, although there was no definitive molecular
support for facultative parthenogenesis in this single case, the absence of additional alleles
in the offspring, as well as the fact that the mother did not have contact with males since
its birth are in agreement with the facultative parthenogenesis hypothesis.

In addition and assuming that each mother in the four cases analyzed herein came
from a Mendelian population in Hardy-Weinberg equilibrium, as reported by Shibata et
al. (2017), the relationship between the number of alleles and the number of haplotypes
could help to estimate the allelic frequency for each marker. Then, after calculating the
probability of obtaining the same offspring in a normal process of sexual reproduction,
the hypotheses of paternity or long-term storage of sperm can be rejected, thus confirming
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the parthenogenesis for the cases reported herein. This scenario is supported by the low
combined probability of the genotypes observed in the offspring, evinced by the following
values: 1.9E−3 observed for the B. atrox (ID #933) case, 2.2E−10 for B. moojeni (BUT86)
case, and 3.0E−5 for B. leucurus (MJJS503) case.

Regarding B. moojeni (BUT86), different cells had fused during the meiotic process,
since we observed different bands in the same litter with two markers (Figs. 2A and 2B).

Following Stenberg & Saura (2009), the possible cytogenetic mechanisms of facultative
parthenogenesis are compiled in Table S2. In the apomixis process, or mitotic
parthenogenesis, diploid (2n) eggs are produced because the oocyte undergoes a single
maturation division, almost indistinguishable from mitosis. Contrarily, automictic
parthenogenesis (automixis), which is based onmeiosis, can be subdivided intomechanisms
that cause loss of heterozygosity (gamete duplication, terminal fusion, central fusion, and
random fusion) and mechanisms in which the genotype of the mother is passed to the
offspring without changes (premeiotic doubling and gonoid thelytoky). In that aspect,
Booth & Schuett (2016, and references therein) showed that terminal fusion automixis
(TFA) is the most common mode of facultative parthenogenesis in snakes, after analyzing
different cases reported in the literature. Thus, in terminal fusion automixis, the litter is
composed solely of males due to homozigosity of the sex chromosomes in ‘‘advanced’’
(Caenophidia) snakes (ZZ = viable males; WW = unviable; (Booth & Schuett, 2016)
and references therein), whilst in more ‘‘primitive’’ lineages (Alethinophidia) the sex
determination is of the XX/XY type (XX = viable females; YY = unviable) in at least some
lineages (Gamble et al., 2017).

The karyotype for the mother B. moojeni (BUT44) showed 2n = 36, being 16
macrochromosomes (including the sex pair, ZW) and 20 microchromosomes (Senzaki,
2020), exactly as those reported for other Bothrops (Beçak & Beçak, 1969), evincing that no
significant divergence in chromosomal morphologies were detected, at least in this case.
As observed in birds and some lizards (e.g., lacertids and varanids), some parthenogenetic
lineages of Caenophidian snakes exhibit females as the heterogametic sex (ZW) andmales as
the homogametic sex (ZZ), and in this case only males are produced in the offspring (Olsen,
1975;Watts et al., 2006; Pokorná et al., 2014; Rovatsos et al., 2015). On the other hand, some
species of constricting snakes (e.g., Boa imperator and Python bivittatus)—with XX/XY sex
determination-system and males heterogametic (except for Acrantophis dumerili that has
a ZZ/ZW determination-system)—offspring is composed of females (Gamble et al., 2017).
In fact, it has been suggested that males and females heterogametic in snakes, has evolved
independently at least two times among the phylogenetically distinct heterogametic lineages
(Augstenová et al., 2018). Indeed, our data agreewith this hypothesis, since exclusivelymales
were observed (in all the cases we were able to define the sex of the offspring), and these
data fit in the type B facultative parthenogenesis, according to Booth & Schuett (2016).

Besides, in the three species studied herein (based on molecular information), previous
studies based exclusively on captivity information have already suggested the occurrence
of facultative parthenogenesis in B. moojeni (Batistic et al., 1999) and B. insularis, although
long-term sperm storage could not be ruled out (Almeida-Santos & Salomão, 2002). In
fact, B. insularis is a close relative of B. jararaca (Fenwick et al., 2009; Carrasco et al., 2012),
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a species for which meiosis abnormalities, such as chromosome doubling in oogonia and
male aneuploid gametes are known (Beçak, Beçak & Pereira, 2003). This case indicates
that the induction of facultative parthenogenesis by such meiotic event may not be an
unusual outcome. More recently, facultative parthenogenesis was also observed in Bothrops
asper by Vaughan & Steele (2014), again without molecular support. Still, according to
Almeida-Santos & Salomão (2002), long-term sperm storage is known to occur in different
Bothrops species, raising the possibility that these two reproductive modes can both occur
in the genus. It may be that there is a correlation between characterization of facultative
parthenogenesis and long-term sperm storage in many snake lineages, due to the putative
erroneous interpretation of undetected occurrence of mating (in captivity or in the wild)
as facultative parthenogenesis, when they are in fact a long-term sperm storage situation
(e.g., Schuett, 1992; Siegel & Sever, 2006; Smith et al., 2009; Smith, Schuett & Schwenk, 2010;
Hoss et al., 2011). However, we agree with Booth & Schuett (2011) that previous reports of
long-term sperm storagemay have been overestimated, as the number of cases of facultative
parthenogenesis keeps increasing, suggesting the latter may indeed be more common than
previously detected.

Adding the new results reported herein to those available in the literature, facultative
parthenogenesis attested by molecular markers and/or captivity data has been detected
in a total of 27 species: Crotalus horridus, C. unicolor, C. viridis, Agkistrodon contortrix,
A. piscivorus, Bothrops asper, B. atrox, B. insularis, B. moojeni, B. leucurus (Viperidae),
Oxyuranus scutellatus, Acanthophis antarticus (Elapidae), Boa constrictor, Epicrates
maurus, E. cenchria, Eunectes murinus, Chilabothrus angulifer (Boidae), Python bivittatus,
P. regius, P. brongersmai, Malopython reticulatus (Pythonidae), Acrochordus arafurae
(Acrochordidae), Thamnophis elegans vagrans, T. marcianus, T. radix, T. couchii, and
Nerodia sipedon (Colubridae) (Batistic et al., 1999; Almeida-Santos & Salomão, 2002; Booth
et al., 2011a; Booth et al., 2011b; Vaughan & Steele, 2014; revision in Booth & Schuett, 2016;
Shibata et al., 2017; Allen, Sanders & Thomson, 2018; Seixas et al., 2020).

Additionally, as new cases of parthenogenesis have increased, new perspectives
on integrative researches have also been emerging; for instance, Calvete et al. (2018)
investigated the composition and function of the venom of one male—resulting from
automictic parthenogenesis of a mother—of Agkistrodon contortrix and two unrelated
wild representatives in order to study the consequences of loss of genetic variability in the
parthenogenetic male. The results evinced high level of similarity between the venom of
the mother and that one of the parthenogenetic offspring, despite the loss of overall allelic
diversity in the latter.

It is worth reinforcing the importance of new studies to investigate the possibility
of facultative parthenogenesis as a more pragmatic evolutionary process in New World
vipers.

CONCLUSIONS
Three cases of facultative parthenogenesis in the Neotropical pitviper genus Bothrops were
confirmed by molecular markers (heterologous microsatellites) and captivity information
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altogether. Infertile eggs or non-viable ova and malformed offspring showed to be also
very common in those cases. Besides, these are the first cases with molecular evidence in
the literature regarding Neotropical pitvipers, so it is possible that further cases in different
related species reveal that such a trace may be present as an ancient characteristic in other
New World pitviper lineages as well.

Future multidisciplinary studies involving molecular testing, ecological, and
evolutionary approaches may shed a light on the putative correlation and effects of
different modes of reproduction.
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